CanCoast: a tool for national coastal mapping and The Coastal Information System: it's detailoriented older cousin

G. Manson, P. Fraser and The Team: N. Couture, D. Forbes, D. Frobel, T. James, K. Jenner, C. Smith, B. Szlavko, R. Taylor, D. Whalen

Canada

CanCoast

- National scale digital geodatabase
- Contains digital coastal data
 - Shoreline
 - Thematic attribute layers

Multi-purpose

- Assist in climate change adaptation planning
- Improve knowledge of shoreline variability and change
- Identify coastal information and data gaps
- Contribute to sustainable development of marine coasts
- Potential for access to stakeholders
- Support coastal modeling research
- Supports other local/regional coastal classification
 - e.g. Coastal Information System

CanCoast geodatabase

- ArcGIS 9 FGDC metadata
- Flexible, updatable, queriable
- FRFF!

So far...

- **Developed shoreline**
- Attributed new shoreline with Shaw variables
- Re-calculated sensitivity to sea level change

Canada

Updating layers, including new layers

The CanCoast shoreline

CanVec 9 (NRCan) Deliberately use the term shoreline as it represents mean water level 0 m CGVD28

Canada

Ressources naturelles Natural Resources Canada

Thematic layers

- Thematic layers can be raster or vector (point, line, polygon)
- Existing (from Shaw et al., 1998)
 - Relief, Rock Type, Landform, Sea Level Change, Shoreline Displacement, Tidal Range, Wave Heights, Sensitivity to Sea-Level Rise
- Updated or replaced
 - Relief from 1:50K topo \Rightarrow CDED DEM analysis
 - Rock Type from various ⇒ 1:5M Bedrock Geology (Wheeler et al.) and Surficial Geology (Fulton et al.)
 - Tidal Range \Rightarrow updated raster Tidal Range
 - Sea-level rise \Rightarrow updated with modelled data
- Planned updates/replacements
 - Relief \Rightarrow DEM analysis
 - Wave heights ⇒ modelled including sea ice
 - Sensitivity to Sea-Level Rise \Rightarrow Sensitivity to Climate Change (or other)
- Planned new themeatic layers
 - Permafrost
 - Socio-economic data (population)

Nesting Thematic Layers

- CanCoast can accommodate new thematic layers at any scale/level of detail
- Attributes from the new layer are mapped to the CanCoast shoreline
- So far we have been bringing generalised data (e.g. attributes from 1:50K map sheets, or attributes from 1:5M data) into CanCoast
- General strategy is to resegment the CanCoast shoreline to the more general segments and assign attributes
- Now we're trying to work with data at fine resolution (e.g. segments less than 100 m)
- Strategy is the same but the philosophy is different
- Rather than building a nationally consistent thematic layer, where we have better data, nest that within the nationally consistent layer

Canada

Coastal Information System (CIS)

- Contains coastal form and material information for 3 cross shore zones (Backshore, Foreshore, Nearshore).
- Classification system is hierarchical.
 - Form Supertype e.g. Unlithified or Solid
 - Form Type e.g. beach, slope, flat, cliff, dune, etc.
 - Form Subtype Steep, Ramping, fringing, barrier, etc.
 - Material information is also hierarchical.

Field Name	Data Type
SOURCE_DATA	Long Integer
B_FORM_SUPERTYPE	Text
B_FORM_TYPE	Text
B_FORM_SUBTYPE	Text
B_FORM_HEIGHT	Text
B_FORM_COMMENTS	Text
B_FORM_FEATURES	Text
B_MAT_SUPERTYPE	Text
B_MAT_TYPE	Text
B_MAT_SUBTYPE	Text
B_MAT_COMMENTS	Text
B_MAT_FEATURES	Text

- Some Datasets contain additional layers (Change Mapping, Ice Features)
- 16 Datasets across Canada 10 in Atlantic Canada, 6 Arctic.
- Features are mapped primarily from oblique aerial video. Additional sources are satellite imagery, vertical or obligue photos, and ground surveys.
- Data entry is performed in ArcMap 9.3 using an in house custom tool. Entry tool must be updated to run in ArcGIS 10.x

Canada

CIS Data Structure

CIS Data Entry

CIS Toolbar

Canada

Natural Resources **Ressources naturelles** Canada

CIS Data Coverage – 16 Datasets

- Develop a CIS for local/regional project areas
- Currently in separate geodatabases
- Would like to consolidate into the CanCoast framework for analysis

4 – Nova Scotia HRM Lunenburg Shelburne Pictou

3 – Newfoundland Bonavista SE Avalon W Musgrave

2 – Labrador Voisey's Bay Lake Melville

> Beaufort Sea Cape Parry Banks Island Coronation Gulf Clyde River Queen Maud Gulf – (Not Shown)

6 – Arctic

